
White Paper of Nano - a lightweight
open-sourced cloud platform

White Paper of Nano - a lightweight open-sourced cloud platform
introduction
Features
Differences

Golang
Auto Networking
No Database
Asynchronous Message Driven
Transaction Process
Network Model
Rich API
Divestiture of Resources and Business

Design Essentials
Basic Working Principle
Communication and Networking

Discovery and Networking
Module Communication

Resource Model
Computing Resource Pool
Storage Pool
Address Pool
Images
User and Resource Visibility

Task Process
Session Management
Message Scheduling

Data and Status
Instance Status Synchronization
Node Status Synchronization
Data Storage

Data Security
Image Transport
Monitoring Security
Firewalld and Selinux

Thanks

introduction

The birth of Nano originated from a project require a cloud computing platform to build big data
development environment.

We investigated many cloud computing and virtualization platforms. Many products have lots of
internal components which tight coupling with each other, also bundle with many complex
concepts and configuration makes it difficult to learn and maintain.

af://n0
af://n5

Most of them also rely on a variety of third-party software and libraries, including databases,
message queue, and so on. To build a cloud platform, you need installing 3 or 4 additional
software, which makes the system more vulnerable, less stability, and harder to locate problems.

Some of them even mixed using multiple languages and scripts such as Java/Python/Bash, which
is not only inefficient but also involves too much code for a simple task, making it hard to
understand for the DevOps.

In generally speaking, the current products are too heavy for teams that only need simple
virtualization, but lack resources for research and maintenance, so that why we created Nano.

Nano is a virtualization management software based on CentOS and KVM, which manages cloud
instances backing by server clusters as resource pools.

It replaces manual operations with automated processes, provides a powerful platform while
keeping things simple.

You can turn any server enable Intel VT-d or AMD-v technology into an IaaS platform, and begin
deploying virtual machines in 3-minutes with a tiny Nano installer.

Nano uses MIT license, which is free for modification, personal or commercial use.

Features

Compact: Around 30,000 lines of Golang code, less than 1/300 of OpenStack. Only three
binaries to deploy, 9MB in maximum, no third-party software or dependency required, and
easily replaced when upgrading.
Out-Of-Box: Bundled with rich functions like the Web portal, guest monitor, instance clone,
and failover. Automated configure processes including from module discovery, networking
to device selection.
Reliable: "All or Nothing" transaction mode, rollback when an error occurs, release all
resources and resume state. Detect the status of every node in the cluster in realtime,
automatically synchronizes the instance data for precise.
Expandable: All functions backed by REST API. Divide resource services and the business
layer for customization and integration. Goroutine-based abstraction enables rapid
development neglecting the complex backend mechanism.

Differences

Golang

Nano developed by Golang, a new language designed by Google for backend service, all
management functions implements without any external script using the rich libraries. Using
Goroutine, we can speed up business development while maximizing server performance.

Most importantly, Go compiles to tiny binary, which is small in size and efficient in execution, no
runtime lib or dependency required. The standalone binary can install on any environments, and
easier to deploy and upgrade.

Auto Networking

Based on multicast protocol, modules automated discovery each other and establish
communication without manual configuration.

When the device migrated or the address changed, it will update and synchorize associated
modules automatically, Which ensures a reliable cluster in an unstable network environment.

af://n180
af://n190
af://n191
af://n194

No Database

Many products use traditional RMDB such as MySQL to store configuration and exchange data.
The database is running on a slow disk, it also vulnerable to software failures or program bug
which produce wrong data causing state abnormal or allocate fail. In that case, only the most
experienced administrators could locate the problems in the backend database.

Besides, the database is a complex system, involving daily maintenance, backup, security,
performance tuning, etc, it is too heavy and risky for a small team without DBA expert. Not a few
production systems cracked by default database account or the database vulnerability not fixed
in time.

Instead, Nano using dispatched JSON files to store configuration and data. All data collected,
synchronized in real-time, and process in memory. All the status keep updated. In any case, you
can restart modules to resume.

File storage is easy to backup and restore, make the system more robust.

Asynchronous Message Driven

Most of the current products use the RPC (Remote Procedure Call) to communicate. Although the
RPC is simple to use, it usually executes synchronously, which means it must wait for a response
or timeout before it continues to process.When there is an exception on the network or server, it
often leads to blocking or slow response, so it is not suitable for the high-performance
concurrent task.

Nano uses the asynchronous message commonly used in high-performance distributed systems
to communicate and cooperate with the transaction processing module to allow hundreds of
thousands of task running in parallel.

Transaction Process

The computer system is not a perfect system that never fails. On the contrary, when the cluster
extends to a particular scale, disk damage or network failure is your daily struggle. When
something goes wrong, most of the current product is just dropping the job. But the resources
already allocated and the data is inconsistent, a manual recover is required.

All tasks of Nano running on the "All or Nothing" transaction mode, rollback when an error
occurs, release all resources and resume state. Every task owns a session, which can commit or
rollback separately, enable the rapid parallel process.

Network Model

Nano simplifies the network model of virtualization, the instance bridges to the physical network
through a host interface by default. The instance obtains the address and network configuration
through the physical router as a physical server, then send packets through the physical switch.

The instances are visible in the physical network, and administrators can manage and configure
them through existing physical routers and switches as regular devices.

Rich API

Nano designed for customization and integration from the beginning. You can access all service
and function via a unified RESTful API, which easy-to-use in most languages and frameworks, and
leverage all potential of your application without any backdoor or hack API.

af://n197
af://n202
af://n205
af://n208
af://n211

Divestiture of Resources and Business

The architecture of Nano divide system into two parts, the frontend implement business
workflow and the backend service provides resources management to support the frontend
without concern the logic of the application.

You can build any frontend application as your wish, and no need to change the backend service
or models.

Design Essentials

Basic Working Principle

Nano builds one or more x86 servers into a virtual resource pool. When a user issues a creating
request, the Core module selects the appropriate host according to the system load of each node
in the target pool, then send message to build a new instance, and schedule the subsequent
management and recycle.

The Core is the main module responsible for the establishing cluster, monitoring status,
scheduling resources, providing API, handling task requests. When establishing a cluster, start the
Core first, then other modules could join.

The Cell module runs on every server needs hosting instances. The Cell module base on KVM and
Libvirt, it keeps collecting the resource status and synchronizes to the Core module in real-time. It
allocates resources and assembles into a new instance for users when received a creating
request.

af://n213
af://n216
af://n217

The FrontEnd module implements a Web portal backed by the REST API of the Core.
Administrators can manage the whole system in this portal, both physical and virtual resources
included. You can also build a series of Web App for their business.

Communication and Networking

The cluster nodes use UDP-based reliable transport protocol for communication. The current
version uses JSON for message serialization and Key-Value mechanism to carry parameters which
is easy to extend while maintaining backward compatibility.

Discovery and Networking

Each Nano node uses at least one UDP port to communicate, and in a production environment, a
server usually has multiple network interfaces. You must have the correct address to establish
connections. A Nano module uses the multicast to discover the domain address of the cluster,
then chooses an unused port to establish communication.

No manual configure required, start the Core first, and make sure all modules use identical
domain parameters.

Module Communication

af://n224
af://n226
af://n230

Nano has external and internal network communications.

The external communication is between the cluster and the external module, usually using a
fixed address for access, likes the Web portal (TCP 5850 in default) and API service of the Core
module(TCP 5870 in default), which can configure on your demand.

Internal communication works between cluster nodes, similar to P2P that every node has a
unique name to communicate with each other. the communication network monitoring the node
status, when a node joins, it automated establishes connections with the associated nodes and
releases when it leaves.

Adapt to the unstable network environment, the communicate address chosen automated by the
system without manual configure.

When the server migrated or changed address, the module will update the latest configuration
and resume associations, and all subsequent requests switch to the new address for processing.

The internal HTTPS stream is used to transport encrypted binary data, and UDP is used to
transmit control messages. The control message usually contains the names of sender and
receiver, which will ensure delivery by the framework of Nano after sent. the UDP messages can
also use for rapid internal messaging in a node which has multiple submodules.

Resource Model

Computing Resource Pool

The computing resource pool is the center scheduling unit, composed of one or more servers
with Cell nodes installed.

af://n238
af://n239

The Cell keeps collecting the status of this node and report to Core. When Core receives a
creating request, it will choose a host with lighter load depends on the current status of every
server in the pool, to distribute the pressure on the system and prolong the life of the server.

A Nano cluster could configure multiple resource pools, but a Cell node only belongs to one
resource pool, the resources isolate by pools. A computing pool could associate with an address
pool and a storage pool, instances created in the same pool use the identical storage and
address backend, no need to configure individually. For example, if one resource pool dedicates
to VIP with SSD backing instances, and the other resource pool serves cost-effective users, new
instances bundle with SAS disk.

Lots of new virtualized devices added to KVM/QEMU, some has more features and others
providing better performance, but not all operating systems recognize them. Nano optimizes the
combination of virtual devices based on the system version, when creating an instance, uses the
corresponding configuration of the target version to build the virtual machine to balance
compatibility and performance.

For example, the "CentOS 7" uses VirtIO driver for disk and network, but "Legacy" uses IDE disk
and RTL8139 network interface.

Storage Pool

By default, the instance data stored in the local file system of the host, which is cost-effective and
fast, but if the server crashes, all instances will shutdown.

The storage pool encapsulates dedicated storage devices, such as NFS servers or FC SAN, as
logical storage space. When creating an instance, the Core module allocates virtual volumes from
the storage pool, then mount as a storage device.

Because the instance data stores on the backend storage pool, the system could restore instance
on other nodes automated when a server crashed. You can also migrate instances between
nodes to rebalance system pressure when backing with the storage pool.

A storage pool map to one shared storage path, one storage pool can back multiple computing
pools at the same time, but each computing pool can only bound with one storage pool.

Address Pool

af://n246
af://n252

By default, the instances of Nano obtain addresses from the physical network through bridged
networks. But for users want to manage the instance IP more accurate, the address pool can be
useful.

An address pool consists of one or more available address segments. When creating an instance,
a new IP allocates from available segments in the attached address pool. When deleting the
instance, the IP returned to the address pool and available for another request.

The Cell implements a tiny DHCP service, which assigns the allocated IP and the associated
gateway, DNS, and other information to the local instances.

Images

A clean instance without operation system and application is useless, but you can fast deploy a
usable one using the media and disk image.

The media image represents a DVD data in ISO format, which can load into instance working as a
physical CD for installing OS or software. It usually is used to customize a template instance.

The disk image represents the disk data of a virtual machine, which can be used to fast clone with
the identical OS and software as the original one in a short time. You can build a disk image from
any instance.

User and Resource Visibility

Nano provides privilege management over users, user groups, and roles by the FrontEnd.

By default, resources such as instance and image are only visible to their owner. However, the
administrator could configure group resource visibility to allow access to resources created by
other users of the same group, which enables sharing and collaboration.

Task Process

Session Management

In distributed systems, there are usually a large number of concurrent tasks to process.

The session is the basic unit of task management. Nano allocates a session object for each task
to manage the executive state, such as tracks the running phase or records temporal data, it
could roll back or submit when necessary.

af://n256
af://n261
af://n264
af://n265

Every node involve in internal communication has its session management mechanism, and each
session is usually assigned a unique ID within this node.

A message store the source session ID, when received, the receiver sends the response to the
original sender, which enable multiple task multiplex into one connection.

Message Scheduling

Based on the Channel of Golang, Nano divides the processing flow into multiple serial message-
driven pipelining. Invoked by received message, throw out immediately after the processing
completed, and then process the next one.

This model ensures that each processing pipeline can handle multiple concurrent tasks without
waiting for a response or switching context to maximize efficiency.

Data and Status

Most current products depend on a database to store and exchange data. However, the
database, which is slow and troublesome, often causes data corrupted or security risk. So Nano
made a lot of new attempts in this part.

af://n271
af://n276

The following are data management principles of Nano:

Performance first, accuracy first
Real-time data in the memory is primary, using persistent data as backup.
Automated generate when no configuration available
Simplify the structure and reduce the occupation

Nano designed a variety of strategies to ensure that the core processing module can always get
the latest and reliable status. Because all the data are processed and stored in memory, which is
much faster than the database, it could easily handle hundreds of thousands of requests,
guarantee essential performance for large-scale cluster processing.

Instance Status Synchronization

There are always three copies of instance status and data in the cluster: two in memory of the
Core and Cell modules, other in the configure file on the Cell.

When created a new instance, the Cell store the instance data in memory, then notify to the Core.
After the Core created a duplicated data, the Cell saves the configuration into the local file as a
backup.

When Cell restarts, it will load all configuration from local files, then compare with running
instances, recover or correct the data if necessary. After verifying the data, the Cell notifies all
instance status to the Core and enter monitor routine.

The Cell will synchronize any change of instance status to the Core, which allows the Core to
handle a lot of requests without communication with the Cell. Faster response and lower
footprint.

Node Status Synchronization

All Nano modules work on a virtual link layer similar to P2P, the cluster monitor status of every
node. When nodes join or leave the domain, the system will update the association, reroute
request or invoke failover. The link detection keeps running in the background.

Data synchronization varies by module type. When started, the Core automated synchronize all
instance status to the Core, then fetch storage and address pool configuration from the Core. The
Core collects loads of physical and virtual resources about every 2 seconds and notifies the Core
that it can balance system pressure more precisely.

af://n289
af://n295

Furthermore, if you encounter any data or status inconsistent, restarting the module may resolve
the problem in most cases.

Data Storage

All data in Nano processed in memory, and the data needs to be persisted will save in a JSON file.
JSON can store more complex data than INI, and much smaller than the XML format. Most
development languages can easily handle JSON format, including Golang.

Although the data that needs to store varies from module to module, the following are principles
when saving files:

1. Configuration data stored in the "config" directory and application data store in the "data"
directory which is easy to backup and restore.

2. Divide storage files by resource types, like instance and network, to reduce file size and
improve efficiency.

Because all tasks of Nano use the data in memory, the data stored in JSON is more like a backup
method. All data change will update to the JSON file eventually, and the next time the module
starts, the JSON data will load as initial status.

Data Security

Whether private or public cloud, data security is always a top priority. A lightweight product has
less dependence, shorter execution chain, and fewer system components, which are advantages
in security protection. Even so, Nano still focuses on data security from the very beginning of the
design.

Image Transport

The largest transfer data in Nano comes from image files, whether building a disk image from an
instance or uploading a media image. All the file data in Nano transmit via HTTPS and encrypted
by TLS to protect from eavesdrop or intercept.

Monitoring Security

af://n299
af://n308
af://n310
af://n312

VNC is a very convenient method to manage instances. Many products embedded a Web VNC
client via WebSocket forwarding to monitor the instance, but it is vulnerable to malicious
intruders.

following are common weaknesses:

VNC is not encrypted or uses the same password
Unencrypted or hijacked WebSocket
third-party WebSocket server vulnerability
VNC port guessing

When Nano create a new instance, it generates a strong password and chooses a random hash
VNC port. Then Nano implements a more secure WebSocket service, dynamically creating
forwarding channels per request and generating temporary random tokens, eliminating reuse
attacks and third-party software vulnerabilities. For user's convenience, any standard through
third-party VNC clients still able to access the instances created in Nano.

Firewalld and Selinux

Firewalld and Selinux are new standard security mechanism of the Linux system. They made
significant improvements in security, but become very strict with software compliance.

The Nano following the security design specification from the beginning, it is running with
Firewalld and Selinux smoothly, do not need lowering your security to work.

Thanks

At first, Nano was just a small product for practicing Golang, but I didn't expect to get so much
enthusiastic feedback from our supporters, and it was a surprise that it reached the official
launch of 1. 0

Here, I would like to thank all the supporters who concerning and helping the growth of the Nano
project for a long time. I also hope that the project can keep going and help more who love cloud
computing and virtualization.

af://n325
af://n165

	White Paper of Nano - a lightweight open-sourced cloud platform
	introduction
	Features
	Differences
	Golang
	Auto Networking
	No Database
	Asynchronous Message Driven
	Transaction Process
	Network Model
	Rich API
	Divestiture of Resources and Business

	Design Essentials
	Basic Working Principle
	Communication and Networking
	Discovery and Networking
	Module Communication

	Resource Model
	Computing Resource Pool
	Storage Pool
	Address Pool
	Images
	User and Resource Visibility

	Task Process
	Session Management
	Message Scheduling

	Data and Status
	Instance Status Synchronization
	Node Status Synchronization
	Data Storage

	Data Security
	Image Transport
	Monitoring Security
	Firewalld and Selinux

	Thanks

